QRP 2m FM Transceiver Project

IZ0ROO, Paolo Pinto

October 2011
Table of contents

Introduction .. 4
Technical Data ... 5
Circuit description .. 6
 CPU (Central Processing Unit) ... 6
 Operations .. 9
Receiver .. 11
Transmitter .. 12
PLL – VCO .. 12
 PLL parameters .. 13
 How to calculate the N and A values ? ... 14
 Registers N and A for each frequency .. 15
Schematics .. 16
Parts List .. 20
Semiconductors outline drawings ... 22
PCB layout ... 24
Firmware ... 26
Calibration ... 30
 CPU programming .. 30
 PLL calibration ... 30
 Receiver calibration ... 30
 Transmitter calibration .. 30
Components Suppliers ... 31
Software ... 31
Note .. 31
Limitation of incidental or consequential damages ... 31
Pictures ... 32
Introduction

The complexity of amateur transceivers reached the point that their construction is generally left to commercial manufacturers. For many radio amateurs the number of components required to build such a project and their assembly often discourage from starting this adventure.

Another question that many amateurs are asking is "why should I build a homebrewed radio when I could buy it paying less and perhaps obtaining more functions?" and this is for sure a correct question!

Electronic difficulties are accompanied by mechanical problems. Replicating the mechanical aspect of a modern enclosure seems to require a machine shop and the talents of an artist.

There are many difficulties not always easily and economically overcoming but the most important reason which encourages the amateur to start this adventure is the ability to transmit and to receive his voice with an object built with his own hands.

Who builds a homebrewed radio lives on the spirit of Guglielmo Marconi\(^1\), who faced the airwaves with his radio equipments and experiments.

This is my second transceiver, designed with the desire to constantly learn new concepts and experiment with new techniques. I wanted to design a easy to build radio with readily available components. This paper describes the main concepts and the construction of a QRP VHF transceiver on the 2m band (144-148 MHz) designed after many experiments and tests.

I have used all discrete components avoiding the use of SMD components, difficult to solder and replace. This transceiver is based on a microcontroller that governs all the functions. The controller I used is the Parallax Basic Stamp BS2-IC.

The transceiver is based on classic superheterodyne design. It adopts a double conversion narrowband superheterodyne FM receiver with excellent sensitivity achieved by a dual-gate MOSFET. The project of the receiver has been significantly simplified by using a Motorola MC3372 integrated circuit. The frequency stability of the VCO is then achieved using a PLL with reference frequency of 8 MHz, I used a Fujitsu PLL MB1502 working up to 1.1 Ghz.

The transmitter provides about 1.5 W of power into a load of 52 ohms.

I hope you will find this lecture interesting and useful for your next radio creations.

Note: This transceiver may be operated only by radio amateurs as part of their approval.

Technical Data

General
- Frequency range: 144-148 MHz U.S.A. (144-146 Europe)
- Channel spacing: 25kHz
- Power supply: 13.8 V DC ±20% (negative ground)
- Microprocessor PLL controlled

Receiver
- Double-conversion super heterodyne system
- Sensitivity: 0.2µV typical (at 12dB SINAD)
- Intermediate frequencies: 1st 10.7Mhz, 2nd 455 Khz
- Audio output power
- 1W at 10% distortion at 8Ω

Transmitter
- RF power: 1.5W at 12V

User interface
- Button: frequency UP
- Button: frequency DOWN
- Button: MID frequency
- Button: Microphone PTT (push to talk)
- AF gain
- Squelch
- LCD Display
- S-meter for signal reception and power transmission
Circuit description

In this picture you can see the block diagram of the transceiver.

The transceiver is controlled by a Parallax Basic Stamp "BS2-IC" CPU. For any specific and detailed information about this great processor, visit the site: http://www.parallax.com

A BASIC Stamp is a single-board computer that runs the Parallax PBASIC language interpreter. The developer's code is stored in an EEPROM, which can also be used for data storage. The PBASIC language has easy-to-use commands for basic I/O, like turning devices on or off, interfacing with sensors, etc.

More advanced commands let the BASIC Stamp module interface with other integrated circuits, communicate with each other, and operate in networks.

The BASIC Stamp microcontroller has prospered in hobby, lower-volume engineering projects and education due to ease of use and a wide support base of free application resources.
Fig. 2: Basic Stamp schematic diagram
The BS2 controls all functions of the radio: frequency change, muting status, PLL programming, power switching. The firmware is written in PBasic. The user interaction occurs through three input buttons and through a display for displaying messages.

The processor performs these tasks:

- acquires the user's input: frequency change and pressure of the transmission button (PTT);
- provides power to the various circuits of the radio (transmitter, receiver, PLL-VC);
- programs the registers of the PLL using a synchronous SPI bus (latch Enable, clock, data).

Fig. 3: Main blocks with data / power lines

<table>
<thead>
<tr>
<th>CPU Pin</th>
<th>Pin name</th>
<th>Signal</th>
<th>Signal direction</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>P0</td>
<td>PLL lock (from MB1502)</td>
<td>input</td>
<td>Error</td>
<td>Lock</td>
</tr>
<tr>
<td>6</td>
<td>P1</td>
<td>Muting status (from MC3772)</td>
<td>input</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>P2</td>
<td>PLL power</td>
<td>output</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>P3</td>
<td>RECEIVER power</td>
<td>output</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>9</td>
<td>P4</td>
<td>TRANSMITTER power</td>
<td>output</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>10</td>
<td>P5</td>
<td>PLL LE</td>
<td>output</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>P6</td>
<td>PLL data</td>
<td>output</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>P7</td>
<td>PLL clock</td>
<td>output</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>P8</td>
<td>Serial display</td>
<td>output</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>P9</td>
<td>Button frequency DOWN</td>
<td>input</td>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P10</td>
<td>Button MID frequency</td>
<td>input</td>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P11</td>
<td>Button frequency UP</td>
<td>input</td>
<td>PRESSED</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4: CPU lines description
Operations

When you power the radio on this goes in receive mode and tunes itself to the low band limit frequency (144 MHz), then it enters in a loop that controls the PTT button and the buttons that change frequency.

Reception (RX):
1) the CPU turns on the PLL circuit: \(P2 = 1 \);
2) the CPU communicates to the PLL parameters N and A through \(P5, P6, P7 \) lines;
3) the CPU turns on the receiving circuit: \(P3 = 1 \).

Frequency change UP (the radio is in reception mode):
1) communicates to the PLL the parameters N and A through \(P5, P6, P7 \) lines;
2) updates the frequency on LCD Display (P8 line).

Frequency change DOWN (the radio is in reception mode):
1) communicates to the PLL the parameters N and A through \(P5, P6, P7 \) lines;
2) updates the frequency on LCD Display (P8 line).

Transmission (TX):
1) The CPU detects PTT button activation \(P9 = 0 \);
2) turns off the RX circuit: \(P3 = 0 \);
3) communicates to the PLL the parameters N and A through \(P5, P6, P7 \) lines;
4) turns on the TX circuit: \(P4 = 1 \).

Fig. 5: finite automata representing the states: RX and TX
Power PLL ON

SET PLL register for 144 Mhz

Power RX ON

Switch LCD ON

Fig. 6: software flowchart
Receiver

The principle of operation of the superheterodyne receiver depends on the use of frequency mixing. The signal from the antenna is filtered to reject the image frequency and then is amplified. A local oscillator (VCO) produces a sine wave which mixes with signal from antenna, shifting it to a specific intermediate frequency (IF), usually a lower frequency. The IF signal is itself filtered and amplified and possibly processed in additional ways. The demodulator uses the IF signal rather than the original radio frequency to recreate a copy of the original modulation (audio).

The radio signal coming from the antenna is very small, often only a few microvolts, this will be tuned with L1, C3 and amplified with a Mosfet MSFT1. One more tuned circuit L2, C4 at this stage blocks frequencies which are far from the intended reception frequency. The signal is then fed into a circuit build around the Mosfet MSFT2 where it is mixed with a sine wave from a variable controlled oscillator known as VCO (POS-200). The mixer produces both sum and difference beat frequencies signals, each one containing the modulation contained in the desired signal. The output of the mixer includes the original RF signal at \(f_d \), the local oscillator signal at \(f_{LO} \), and the two new frequencies \(f_d + f_{LO} \) and \(f_d - f_{LO} \).

The mixer may inadvertently produce additional frequencies such as 3\(^{rd}\) and higher-order intermodulation products. The undesired signals are removed by the IF bandpass filter XF1, leaving only the desired offset IF signal at \(f_{IF} \) (10.7 Mhz) which contains the original modulation (transmitted information) as the received radio signal had at \(f_d \).

The next stage is the intermediate frequency amplifier TR1 that is tuned to the specific frequency of 10.7 Mhz not dependent on the receiving frequency. The 10.7 Mhz signal is entered in the discriminator stage IC2 (MC3372).

The MC3372 performs single conversion FM reception and consists of an oscillator, mixer, limiting IF amplifier, quadrature discriminator, active filter, squelch switch, and meter drive circuitry. This device is designed for use in FM dual conversion communication equipment.

![Diagram of MC3372 and TDA7052 pinout](image)

Fig. 7: MC3372 and TDA7052 pinout

The MC3372 is similar to the MC3361/MC3357 FM IFs, except that a signal strength indicator replaces the scan function controlling driver which is in the MC3361/MC3357.

The muting function is implemented connecting the pin 14 (Mute) to the pin 4 of the TDA7052. A transistor TR3 communicates to the CPU the status of this line.
Transmitter

The signal from the VCO is amplified by the MAV-11 before being sent to the final stage TR11. The audio modulation it performed using a transistor TR4 that amplifies the signal coming from the microphone.

PLL– VCO

A voltage-controlled oscillator or VCO is an electronic oscillator designed to be controlled in oscillation frequency by a voltage input. The frequency of oscillation is varied by the applied DC voltage, while modulating signals may also be fed into the VCO to cause frequency modulation (FM).

The VCO used in this RTX is the POS-200 from Mini-Circuits.

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>FREQ. (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNING VOLTAGE (V)</th>
<th>PHASE NOISE dBc/Hz @ offset frequencies</th>
<th>PULLING OUTPUT (dBc) @ 12 dB/Hz</th>
<th>PUSHING OUTPUT (dBc)</th>
<th>TUNING SENSITIVITY (MHz/V)</th>
<th>HARMONICS (dBc)</th>
<th>3 dB MODULATION BANDWIDTH (MHz)</th>
<th>DC OPERATING POWER (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS-200</td>
<td>130-200</td>
<td>10</td>
<td>1</td>
<td>100</td>
<td>-145</td>
<td>0.1</td>
<td>6.1</td>
<td>-20</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 8: POS-200 functional data

The VCO generates a signal within the 144-148 Mhz (144-146 Mhz in Europe) frequency range for the transmission and within the 133.3-137.3 Mhz frequency range for the reception. The VCO output is connected to the receiver mixer and to the MAV-11 amplifier for the transmitter. The VCO circuit is always active. In reception mode the receiver part is powered by the microprocessor and the VCO injects its signal in the mixer. In transmission mode the receiving part is switched off, the PLL is updated with the parameters required to produce frequencies from 144 to 148 MHz and the transmitter is switched on.

The VCO is controlled by the PLL (Phase Locked Loop). The main blocks inside a PLL are: the comparator phase (Phase Detector), the low pass filter PB (loop filter), the VCO (Voltage Controlled Oscillator) and the reference oscillator.

![PLL Diagram](image)

Fig. 9: PLL description

In principle, a PLL is a device that locks the phase or the frequency of an output signal to a reference. At the operational level, therefore, the phase comparator makes a comparison between
the phase reference signal and the signal output from the VCO and generates a voltage whose average value is proportional to the phase shift of the two signals.

The output signal from the phase comparator is then a square wave with a variable duty-cycle and is up to the low pass filter to extract only the component continues to be applied to the oscillator voltage-controlled VCO. As can be seen on the diagram the entire system is negative feedback that tends to stabilize the VCO frequency equal to the input of reference but, as a result of hardware used in the phase comparators, the two signals, there will usually be a fixed phase difference, the previous situation goes under the name of "signal lock".

The Fujitsu MB1502 PLL, utilizing BI-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function. The MB1502 contains a 1.1GHz two modulus prescaler that can select of either 64/65 or 128/129 divide ratio, control signal generator, 16-bit shift register, 15-bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18-bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter) and analogue switch to speed up lock up time.

PLL parameters

The microcontroller BS2-IC communicates with the PLL using three data lines (Latch enable, Data, Clock). The synchronous serial protocol (SPI) is used to load data into the latch R, N, A and SW registers. The data must be transferred in this order:

1) registers SW, R;
2) control bit C=1;
3) clock pulse (PULSOUT);
4) registers N, A;
5) control bit C=0;
6) clock pulse (PULSOUT).

With this procedure each value is loaded in the respective latch that stores and provides the corresponding divisor.

```
SHIFTOUT DataPin, ClockPin, MSBFIRST, [1\1]  ' BIT SW
SHIFTOUT DataPin, ClockPin, MSBFIRST, [640\14]  ' register R
SHIFTOUT DataPin, ClockPin, MSBFIRST, [1\1]  ' Bit C=1
PULSOUT LatchEnablePin, 15

SHIFTOUT DataPin, ClockPin, MSBFIRST, [N\11]  ' LOAD N
SHIFTOUT DataPin, ClockPin, MSBFIRST, [A\7]  ' LOAD A
SHIFTOUT DataPin, ClockPin, MSBFIRST, [0\1]  ' Bit C=0
PULSOUT LatchEnablePin, 15
```
How to calculate the N and A values?

Let’s do an example. Supposing we want to know the N and A parameters for a 145 Mhz frequency:

\[
RIF = 12.5 \text{ Khz} = 12500 \text{ Hz}
\]

\[
P = 64
\]

\[
F = 145 \text{ Mhz} = 145000000 \text{Hz}
\]

\[
F_{VCO} = RIF \cdot [(P \cdot N) + A]
\]

To compute N and A:

\[
\text{Division factor: } F_{DC} = \frac{F_{VCO}}{P \cdot RIF} = \frac{145000000}{64 \cdot 12.5} = 181.25
\]

\[
N = \text{integer part}(F_{DC}) = \text{integer part}(181.25) = 181
\]

\[
A = P \cdot \text{decimal}(F_{DC}) = 64 \cdot 0.25 = 16
\]
Registers N and A for each frequency

Transmission			Reception	
Frequency N A	Frequency N A			
144,000 180 0	133,300 166 40			
144,025 180 2	133,325 166 42			
144,050 180 4	133,350 166 44			
144,075 180 6	133,375 166 46			
144,100 180 8	133,400 166 48			
144,125 180 10	133,425 166 50			
144,150 180 12	133,450 166 52			
144,175 180 14	133,475 166 54			
144,200 180 16	133,500 166 56			
144,225 180 18	133,525 166 58			
144,250 180 20	133,550 166 60			
144,275 180 22	133,575 166 62			
144,300 180 24	133,600 167 0			
144,325 180 26	133,625 167 2			
144,350 180 28	133,650 167 4			
144,375 180 30	133,675 167 6			
144,400 180 32	133,700 167 8			
144,425 180 34	133,725 167 10			
144,450 180 36	133,750 167 12			
144,475 180 38	133,775 167 14			
144,500 180 40	133,800 167 16			
144,525 180 42	133,825 167 18			
144,550 180 44	133,850 167 20			
144,575 180 46	133,875 167 22			
144,600 180 48	133,900 167 24			
144,625 180 50	133,925 167 26			
144,650 180 52	133,950 167 28			
144,675 180 54	133,975 167 30			
144,700 180 56	134,000 167 32			
144,725 180 58	134,025 167 34			
144,750 180 60	134,050 167 36			
144,775 180 62	134,075 167 38			
144,800 181 0	134,100 167 40			
...
147,825 184 50	137,125 171 26			
147,850 184 52	137,150 171 28			
147,875 184 54	137,175 171 30			
147,900 184 56	137,200 171 32			
147,925 184 58	137,225 171 34			
147,950 184 60	137,250 171 36			
147,975 184 62	137,275 171 38			
148,000 185 0	137,300 171 40			

Fig. 11: PLL parameters datasheet
Schematics

The circuit diagram is spread over five figures. Figure 1 shows the CPU circuit, Figure 2 the PLL schematic, Figure 3 the receiver schematic, Figure 4 the transmitter circuit and Figure 5 the power commutation circuit.

Figure 13: CPU
Figure 14: PLL
Figure 16: transmitter

Figure 17: Power commutation
Parts List

Capacitors

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C46,C52,C53,C78**</td>
<td>4</td>
<td>1 mF</td>
</tr>
<tr>
<td>C12,C29,C30,C68,C69,C77, C78,C85</td>
<td>8</td>
<td>1 nF</td>
</tr>
<tr>
<td>C54</td>
<td>1</td>
<td>10 mF</td>
</tr>
<tr>
<td>C10,C14,C15,C17,C20,C33, C37,C43,C48,C55,C57,C59, C6,C60,C62,C63,C64,C65, C66,C7,C8</td>
<td>21</td>
<td>10 nF</td>
</tr>
<tr>
<td>C41,C60</td>
<td>2</td>
<td>10 pF</td>
</tr>
<tr>
<td>C34</td>
<td>1</td>
<td>100 mF electrolytic</td>
</tr>
<tr>
<td>C,C11,C13,C16,C18,C19, C23,C24,C25,C26,C28,C35, C36,C38,C39,C44,C49,C50, C70,C78*,C81,C82,C83</td>
<td>23</td>
<td>100 nF</td>
</tr>
<tr>
<td>C51</td>
<td>1</td>
<td>220 mF</td>
</tr>
<tr>
<td>C2,C9</td>
<td>2</td>
<td>100 pF</td>
</tr>
<tr>
<td>C75</td>
<td>1</td>
<td>20 pF</td>
</tr>
<tr>
<td>C22</td>
<td>1</td>
<td>220 pF</td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>3.3 pF</td>
</tr>
<tr>
<td>C42,C76,C79</td>
<td>3</td>
<td>30 pF variable capacitor</td>
</tr>
<tr>
<td>C74</td>
<td>1</td>
<td>33 pF</td>
</tr>
<tr>
<td>C73</td>
<td>1</td>
<td>39 pF</td>
</tr>
<tr>
<td>C27,C45</td>
<td>2</td>
<td>4.7 mF electrolytic</td>
</tr>
<tr>
<td>C51</td>
<td>1</td>
<td>47 mF electrolytic</td>
</tr>
<tr>
<td>C31,C32</td>
<td>2</td>
<td>47 nF</td>
</tr>
<tr>
<td>C40</td>
<td>1</td>
<td>47 pF</td>
</tr>
<tr>
<td>C5,C72</td>
<td>2</td>
<td>4700 pF</td>
</tr>
<tr>
<td>C4</td>
<td>1</td>
<td>5.6 pF</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>6.8 pF</td>
</tr>
<tr>
<td>C21,C71</td>
<td>2</td>
<td>68 pF</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11,R19,R39,R4,R53, R54,R69,RV2,VR1,VR2,VR3</td>
<td>11</td>
<td>100K 1/6 W</td>
</tr>
<tr>
<td>R13,R14,R6</td>
<td>3</td>
<td>100R 1/6 W</td>
</tr>
<tr>
<td>RX</td>
<td>1</td>
<td>100R 1 W</td>
</tr>
<tr>
<td>R15,R26,R34,R35,R37,R38, R40,R41,R48,R49,R50,RV1</td>
<td>12</td>
<td>10K 1/6 W</td>
</tr>
<tr>
<td>R17</td>
<td>1</td>
<td>12K 1/6 W</td>
</tr>
<tr>
<td>R5, R10</td>
<td>2</td>
<td>18K 1/6 W</td>
</tr>
<tr>
<td>R11*</td>
<td>1</td>
<td>18R 1/6 W</td>
</tr>
<tr>
<td>R18,R33</td>
<td>2</td>
<td>1K 1/6 W</td>
</tr>
<tr>
<td>R30</td>
<td>1</td>
<td>1K8 1/6 W</td>
</tr>
<tr>
<td>R8</td>
<td>1</td>
<td>1M 1/6 W</td>
</tr>
<tr>
<td>R13,R25,R42,R44,R45,R51, R60,R62,R64,R67,R68</td>
<td>11</td>
<td>220R 1/6 W</td>
</tr>
<tr>
<td>R16</td>
<td>1</td>
<td>22K 1/6 W</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>27R 1/6 W</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>330K 1/6 W</td>
</tr>
<tr>
<td>R55,R66,R67,R9</td>
<td>4</td>
<td>390R 1/6 W</td>
</tr>
<tr>
<td>R56</td>
<td>1</td>
<td>3K3 1/6 W</td>
</tr>
<tr>
<td>R23</td>
<td>1</td>
<td>3K9 1/6 W</td>
</tr>
<tr>
<td>R24</td>
<td>1</td>
<td>470K 1/6 W</td>
</tr>
</tbody>
</table>
R32 1 470R 1/6 W
R28, R29 2 47K 1/6 W
R20, R22, R43, R46, R47, R52, R61, R63, R65 9 4K7 1/6 W
R2, R36 2 560R 1/6 W
R7 1 56K 1/6 W
R12, R35* 2 680R 1/6 W

Transistors
- TR1 1 BFR89
- TR2, TR3, TR4, TR5, TR6, TR7 6 BC547
- TR8, TR9, TR10 3 BD140
- TR11 1 2N4427

Crystals
- X1 1 10.245 Mhz
- X2 1 8 Mhz

Mosfet
- MFST2, MSFT1 2 BF988

Integrated Circuits
- IC5 1 LM358
- IC11, IC8, IC9 3 LM7805
- IC7 1 LM7808
- IC10 1 LM7809
- IC6 1 Mini-Circuits MAV-11
- IC4 1 Fujitsu MB1502
- IC2 1 Motorola MC3372
- IC1 1 Basic Stamp BS2-IC, Parallax item code BS2-IC
- IC3 1 Philips TDA7052

Diodes
- D5 1 1N4007
- D6* 1 AA119
- D1, D2, D3, D6, D7, D8 6 1N4148

Coils
- L1, L2 2 Coilcraft 146-04J08SL
- L3, L4 2 10.7 Mhz green IF
- L5 1 455 KHz black IF
- L6, L9 2 0.33 uH
- L7, L8 2 3 turns on air (diameter 4 mm) wire 0.8 mm
- L11, L12, L13, L7 3 4 turns on air (diameter 4 mm) wire 0.8 mm
- L, L10 2 1 uH

Ceramic filters
- CF1 1 Murata SFVLF10M7LF00-B0
- CF2 1 Murata CFW455D

Miscellaneous
- VCO 1 Mini-Circuits POS-200
- SP 1 8 ohm SPEAKER
- Meter 1 Meter
- LCD 1 4x20 Serial LCD (Backlit), Parallax item code 27979
- RELE 1 12V two ways rele
- LED1 1 LED
Semiconductors outline drawings

<table>
<thead>
<tr>
<th>Component</th>
<th>Outline drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF988</td>
<td></td>
</tr>
<tr>
<td>BFR99</td>
<td></td>
</tr>
<tr>
<td>BC547</td>
<td></td>
</tr>
<tr>
<td>BD140</td>
<td></td>
</tr>
<tr>
<td>MAV-11</td>
<td></td>
</tr>
</tbody>
</table>

1 = Drain, 2 = Source, 3 = Gate 1, 4 = Gate 2

Bottom view

CASE 28–04, STYLE 17
TO–92 (TO–226A)

IZ0ROO@fastwebnet.it
POS-200

LEETER "M" OVER PIN 2

RFOUT 2
VCC 1
V-TUNE 8
GROUND 3,4,5,6,7
CASEGROUND 3,4,5,6,7

TOP VIEW

G TYP

K DIA TYP

2N4427

PIN	DESCRIPTION
1 | emitter
2 | base
3 | collector

LM780XX

1. Input
2. GND
3. Output

IZ0ROO@fastwebnet.it

QRP 2m FM Transceiver PP-002m
PCB layout
The PCB was designed using Sprint Layout Software, it is a double face circuit.

Fig. 18: PCB Front view

Fig. 19: PCB back view
Fig. 20: functional blocks on PCB
Firmware

'==
' File....... PP-002m PP-002m.bs2
' Purpose.... (144-148 Mhz) 2m RTX Firmware
' Author...... IZ0ROO, Paolo Pinto
' E-mail..... iz0roo@fastwebnet.it
' Started... 09-01-2011
' Updated... 09-20-2011
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
'==

' Serial baud rates
#SELECT $STAMP
#CASE BS2, BS2E, BS2PE
T2400 CON 396
T9600 CON 84
T19K2 CON 32
#CASE BS2SX, BS2P
T2400 CON 1021
T9600 CON 240
T19K2 CON 110
#ENDSELECT
LcdBaud CON T19K2

' Parallax Serial LCD pin
LCD PIN 8
LcdBkSpc CON $08 ' move cursor left
LcdRlt CON $09 ' move cursor right
LcdClrs CON $0A ' move cursor down 1 line
LcdClrd VAR Byte
LcdBlon CON $11 ' backlight on
LcdBlf CON $12 ' backlight off
LcdOfl CON $15 ' LCD off
LcdOon1 CON $16 ' LCD on; cursor off, blink off
LcdOon2 CON $17 ' LCD on; cursor off, blink on
LcdOon3 CON $18 ' LCD on; cursor on, blink off
LcdOon4 CON $19 ' LCD on; cursor on, blink on
LcdLine1 CON $80 ' move to line 1, column 0
LcdLine2 CON $94 ' move to line 2, column 0
LcdLine3 CON $A8 ' move to line 3, column 0
LcdLine4 CON $BC ' move to line 2, column 0
LcdCC0 CON $F8 ' define custom char 0
LcdCC1 CON $F9 ' define custom char 1
LcdCC2 CON $FA ' define custom char 2
LcdCC3 CON $FB ' define custom char 3
LcdCC4 CON $FC ' define custom char 4
LcdCC5 CON $FD ' define custom char 5
LcdCC6 CON $FE ' define custom char 6
LcdCC7 CON $FF ' define custom char 7

muting PIN 1
INPUT muting

' assigns PLL spi bus lines
ClockPin PIN 7 ' MB1504 clock pin
DataPin PIN 6 ' MB1504 data pin
LatchEnablePin PIN 5 ' MB1504 latch pin

' PLL registers and parameters
N1 VAR Byte
N2 VAR Byte
N VAR Byte
A VAR Word
A1 VAR Word
A2 VAR Word
TMP VAR Byte
TMP2 VAR Byte

LOW LatchEnablePin ' initialize latch output

' Frequency range
LFrequ VAR Word
HFrequ VAR Word
FStep VAR Word
Frequ VAR Word
Frequ2 VAR Word

LFrequ=44000-10700
HFrequ=48000-10700
Frequ=LFrequ

' Assigns buttons to BS2 pins
pttBtn PIN 9
pttBtnWrk VAR Byte

upBtn PIN 11
upBtnWrk VAR Byte

midBtn PIN 12
midBtnWrk VAR Byte

downBtn PIN 10
downBtnWrk VAR Byte

TXState VAR Byte

' Start main program
Main:
TXState=1

' Initialize LCD DISPLAY
HIGH LCD
PAUSE 100
SEROUT LCD, LcdBaud, [LcdBlon]
PAUSE 550
SEROUT LCD, LcdBaud, [LcdCls]
PAUSE 750
SEROUT LCD, LcdBaud, [(LcdLine1), DEC 1, DEC Freq+10700, " Mhz "]
SEROUT LCD, LcdBaud, [(LcdLine3), "PP-002m rel. 1.0"]
SEROUT LCD, LcdBaud, [(LcdLine4), "(C) 2011 by IZ0ROO"]

' enable PLL circuit
HIGH 2

' set start frequency (144.00 Mhz) N=166 A=40
N=166
A=40
GOSUB PLL ' calls PLL subroutine

' enable RX circuit
LOW 4 'TX OFF
HIGH 3 'RX ON
N2=180
A2=0
TXState=1

' STARTS LISTENING FOR BUTTON PRESSED

' It controls the PTT (Push To Talk) line from microphone to enable TX and disable RX
PTT:

BUTTON pttBtn, 0, 0, 15, pttBtnWrk, 0, No_PressPTT
IF TXState=1 THEN
LOW 3 'RX OFF
HIGH 4 'TX ON

TMP=N
N=N2
TMP2=A
A=A2
GOSUB PLL

N=TMP
A=TMP2
TXState=0
ENDIF
GOTO PTT

' PTT not pressed, RX ON and TX OFF
No_PressPTT:

IF TXState=0 THEN
GOSUB PLL ' calls PLL subroutine

' enable RX circuit
LOW 4 'TX OFF
HIGH 3 'RX ON
TXState=1
IZ0ROO@fastwebnet.it

QRP 2m FM Transceiver PP-002m

ENDIF

'It controls the UP button to increase the frequency
FrequUP:
 BUTTON upBtn, 0, 100, 15, upBtnWrk, 0, FrequMID
 TXState=1
 IF Frequ=LFreq THEN ' if low limit frequency
 A1=40 ' set register (RX) A to initial value
 A2=0 ' set register (TX) A to initial value
 ENDIF
 IF Frequ<=HFrequ-25 THEN ' frequency < high limit
 Frequ=Frequ+25 ' increases frequency 25 Khz
 ENDIF

'REX Frequency parameters
N1=(Frequ/800)+125 ' computes N parameter for PLL

IF (Frequ//800)=0 THEN
 A1=0
ELSE
 A1=A1+2
 IF A1>62 THEN
 A1=0
 ENDIF
ENDIF

N=N1
A=A1
GOSUB PLL

'TX Frequency parameters
N2=((Frequ+10700)/800)+125

IF Frequ=LFreq THEN
 A2=0
ELSE
 A2=A2+2
 IF A2>62 THEN
 A2=0
 ENDIF
ENDIF

SEROUT LCD, LcdBaud, [(LcdLine1), DEC 1, DEC Frequ+10700, " Mhz"]

ENDIF

FrequMID:
 BUTTON midBtn, 0, 100, 15, midBtnWrk, 0, FrequDOWN
 TXState=1
 N2=181
 A2=16
 N1=167
 A1=56
 N=N1
 A=A1
 Frequ=34300
 GOSUB PLL
 SEROUT LCD, LcdBaud, [(LcdLine1), DEC 1, DEC Frequ+10700, " Mhz"]

'It controls the DOWN button to decrease the frequency
FrequDOWN:
 BUTTON downBtn, 0, 100, 15, downBtnWrk, 0, No_PressDOWN
 TXState=1
 IF Frequ=LFreq THEN
 A1=40
 A2=0
 ENDIF
 IF Frequ>=HFrequ+25 THEN
 Frequ=Frequ-25
 ' RX Frequency parameters
 N1=(Frequ/800)+125
 IF (Frequ//800)=0 THEN
 A1=0
 ELSE
 A1=A1-2
 IF A1=65534 THEN
 A1=0
 ENDIF
 ENDIF
 SEROUT LCD, LcdBaud, [(LcdLine1), DEC 1, DEC Frequ+10700, " Mhz"]
 ENDIF

A1=62
ENDIF
ENDIF
N=N1
A=A1
GOSUB PLL

' TX Frequency parameters
N2=((Frequ+10700)/800)+125
IF ((Frequ+10700)//800)=0 THEN
A2=0
ELSE
A2=A2-2
IF A2=65354 THEN
A2=62
ENDIF
ENDIF
SEROUT LCD, LcdBaud, [(LcdLine1), DEC 1, DEC Frequ+10700, " Mhz"]
ENDIF

' down button not pressed
No_PressDOWN:
TXState=1
IF muting=0 THEN
SEROUT LCD, LcdBaud, [(LcdOn1), (LcdLine2), "MUTING OFF "]
ELSE
SEROUT LCD, LcdBaud, [(LcdOn1), (LcdLine2), "MUTING ON "]
ENDIF
GOTO PTT

' PLL Subroutine, it sends division parameters to PLL through SPI protocol
PLL:
SHIPTOUT DataPin, ClockPin, MSBFIRST, [1\1] ' BIT SW
SHIPTOUT DataPin, ClockPin, MSBFIRST, [64\14] ' register R
SHIPTOUT DataPin, ClockPin, MSBFIRST, [1\1] ' bit C=1
PULSOUT LatchEnablePin, 15
SHIPTOUT DataPin, ClockPin, MSBFIRST, [N\11] ' LOAD N
SHIPTOUT DataPin, ClockPin, MSBFIRST, [A\7] ' LOAD A
SHIPTOUT DataPin, ClockPin, MSBFIRST, [0\1] ' bit C=0
PULSOUT LatchEnablePin, 15
RETURN
Calibration

CPU programming
Before tuning the radio, You have to upload the firmware in the CPU.

To calibrate the radio You will need the following tools:
- signal generator;
- digital frequency meter;
- VHF receiver on the working frequencies of the transceiver.

The calibration of the radio is required to obtain the best signal reception and the best signal transmission. I suggest to tune the generator at the frequency of 145 MHz, modulating the signal at 7 kHz, connect its output at the entrance of the antenna and set the signal level at 50 uV.

PLL calibration
Connect the digital frequency meter to adjust the PLL reference oscillator.
1) measure the frequency from the IC4 Pin 1;
2) adjust the C42 variable capacitor in order to obtain an 8 Mhz reading.

Receiver calibration:
Once activated, the generator, You will need to:
1) tune the generator on 145 Mhz modulating the carrier with a 1 Khz signal;
2) tune the radio on 145 Mhz
3) adjust the IFs L3 and L4 for the maximum s-meter deviation;
4) adjust the s-meter trimmer if it isn’t possible to see any movement from the instrument;
5) adjust the coils L1 and L2 to increase the s-meter reading;
6) repeat the procedure from point 3 up to reach the best signal reading;
7) adjust the coil L5 to obtain the lower sound distortion.

Transmitter calibration:
1) tune the radio on 145 Mhz;
2) connect a 50 ohm load or an antenna;
3) push the PTT button;
4) adjust the C79, C75, C76 capacitors in order to obtain the maximum deviation of the s-meter;
5) adjust the VR2 Trimmer to bring the s-meter indicator up to the maximum reading;
6) adjust the VR1 modulation trimmer to get the best modulation. In this case it is necessary the use of a receiver tuned on 145 Mhz used to listen at the transmitted sound.
Components Suppliers

Parallax: http://www.parallax.com
Digikey: http://www.digikey.com
RF Microwaves: http://www.rfmicrowave.it
Printed Circuit Board Manufacturer: http://www.pcb4u.it

Coilcraft: http://www.coilcraft.com
(special thanks to "Coilcraft" for coils samples):

Software

Printed Circuit Board cad: Sprint Layout 5.0: http://www.abacom-online.de
Schematic Diagram: TinyCAD ver.2.80.03: http://tinycad.sourceforge.net
Parallax BS-2 PBasic Editor: http://www.parallax.com

Note

Gerber files are available on request.

Limitation of incidental or consequential damages

The construction of this device is the responsibility of the reader. The author will not be liable for any special, indirect, incidental or consequential damages, including but not limited to any loss of business or profits.
Pictures
IZ0ROO@fastwebnet.it

QRP 2m FM Transceiver PP-002m
IZ0ROO@fastwebnet.it

QRP 2m FM Transceiver PP-002m

IZ0ROO@fastwebnet.it